
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

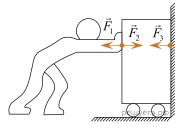
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты материальной точки от времени её движения. Начальная координата x_0 точки равна:

- 1) 12 м 2) 10 м
- 3) 8,0 м 4) 6.0 M
- 5) 5,0 м

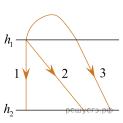
2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = -14t + 3,5t^2$ и $x_2 = 10t + 1,5t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

- 1) 10 c 2) 11 c
 - 3) 12 c
- 5) 14 c

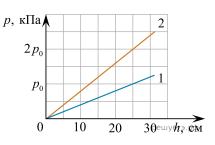

3. Почтовый голубь дважды пролетел путь из пункта А в пункт В, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 36$ мин. Во втором случае, при встречном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 54$ мин.

Если бы ветер был попутным, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

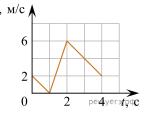
- 1) 18 мин
- 2) 21 мин
- 3) 24 мин


4) 13 c

4. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны F_1 —сила, с которой контейнер действует на человека; F_2 — сила, с которой человек действует на контейнер; F_3 — сила, с которой стена действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?

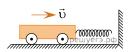

- 1) $\vec{F}_1 = -\vec{F}_2$ 2) $\vec{F}_1 = \vec{F}_3$ 3) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_1 \vec{F}_2 + \vec{F}_3 = 0$

 Тело перемещали с высоты h₁ на высоту h₂ по трём разным траекториям: 1, 2 и 3 (см. рис.). Если при этом сила тяжести совершила работу A_1 , A_2 и A_3 соответственно, то для этих работ справедливо соотношение:

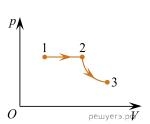


- 1) $A_1 > A_2 = A_3$ 2) $A_1 > A_2 > A_3$ 3) $A_1 = A_2 = A_3$ 4) $A_1 = A_2 < A_3$ 5) $A_1 < A_2 < A_3$

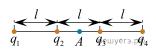
6. На рисунке представлены графики (1 и 2) зависимости гидростатического давления p от глубины h для двух различных жидкостей. Если плотность первой жидкости ρ_1 = 0.80 г/см³, то плотность второй жидкости ор равна:


- 1) 0.80 г/cm^3 2) 0.90 г/cm^3 3) 1.4 г/cm^3 4) 1.6 r/cm^3
- 5) 1.8 г/см^3
- 7. В герметично закрытом сосуде находится идеальный газ, давление которого $p = 0.48 \cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $<v_{KB}>$ = 400 м/с,то плотность ρ газа равна:
- 1) 0.10 kg/m^3 2) 0.30 kg/m^3 3) 0.36 kg/m^3
- 4) 0.90 кг/м^3
- 5) 1.1 kg/m^3
- 8. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от $V_1 = 66$ л до $V_1 = 57$ л. Если начальная температура газа $t_1 = 57$ °C, то конечная температура t_2 газа равна:
 - 1) 12°C
- 2) 22°C
- 3) 32°C
- 4) 42°C
- 5) 52°C
- 9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 25 \, \, \mathrm{Дж}$, при этом внутренняя энергия системы увеличилась на $\Delta U = 55$ Дж. Количество теплоты Q, полученное системой, равно:
 - 1)0
- 2) 25 Дж
- 3) 30 Дж
- 4) 55 Дж
- 5) 80 Дж
- 10. Среди перечисленных ниже физических величин векторная величина указана в строке, номер которой:
 - 1) электрическое напряжение:
- 2) индуктивность:
- 3) электроёмкость:
- 4) напряжённость электростатического поля;
- 5) сила тока.
- 11. Материальная точка массой m = 2.5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент v_x , м/с времени t = 3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ...

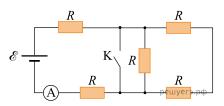
12. Игрок в кёрлинг сообщил плоскому камню начальную скорость \vec{v}_0 , после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu = 0,0093$. Если путь, пройденный камнем, s=34 м, то модуль начальной скорости v_0 камня равен ... $\frac{{\cal M}_{\rm M}}{c}$

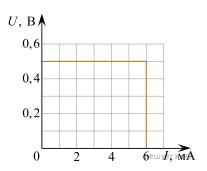


- 13. Тело массой m = 0.25 кг свободно падает без начальной скорости с высоты H. Если на высоте h = 20 м кинетическая энергия тела $E_{\rm K} = 30$ Дж, то первоначальная высота H равна ... м.
- **14.** К тележке массой m = 0.49 кг прикреплена невесомая пружина жёсткостью k = 400 Н/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.



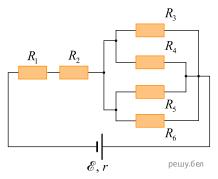
- 15. При нагревании одноатомного идеального газа средняя квадратичная скорость теплового движения его молекул увеличилась в n=1,20 раза. Если начальная температура газа была $t_1=-14\,^{\circ}\mathrm{C}$, то конечная температура t_2 газа равна ... $^{\circ}\mathrm{C}$. Ответ округлите до целого числа.
- **16.** В теплоизолированный сосуд, содержащий $m_1 = 100$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду ($c = 4,2 \, 10^3 \, \text{Дж/(кг °C)}$) массой $m_2 = 50 \, \text{г}$ при температуре $t_2 = 88 \, \text{°C}$. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.


17. Два моля идеального одноатомного газа перевели из состояния 1 в состояние 3 (см. рис.), сообщив ему количество теплоты Q=5,30 кДж. Если при изобарном расширении на участке $1\to 2$ температура газа изменилась на $\Delta T=120$ K, то на участке $2\to 3$ при изотермическом расширении газ совершил работу A, равную ... Дж.


18. Четыре точечных заряда $q_1=0.45$ нКл, $q_2=-0.5$ нКл, $q_3=0.5$ нКл, $q_4=-0.9$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l=30 мм, то в точке A, находящейся посередине между зарядами q_2 и q_3 , модуль напряженности E электростатического поля системы зарядов равен ... $\kappa \mathbf{B}/\mathbf{M}$.

- 19. Зависимость силы тока I в нихромовом $\left(c=460\frac{D}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,3 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,12 А, D=2,2 с $^{-1}$. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=90$ с после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **20.** В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывает силу тока $I_2=28~{\rm MA}$, то до замыкания ключа K амперметр показывал силу тока I_I равную ... мА.

- **21.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети $U_0 = 72$ В. Если действующее значение силы тока в цепи $I_{\rm д} = 0,57$ А, то нагреватель потребляет мощность P, равную ... Вт.
- **22.** В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=400$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от $R_{\min}=0$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.

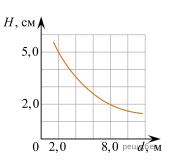

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\phi = 30$ В, то модуль силы F электростатического взаимодействия между зарядами равен ... нH.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0.50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2.0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}},\,$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

